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M O D E L  O F  S U S P E N S I O N  F I L T R A T I O N  W I T H  A C C O U N T  

O F  C O L M A T A T I O N  A N D  S U F F O S I O N  

B. Khuzhaerov UDC 532.546 

A model o f  suspension filtration is suggested, which takes into account the effects ofcolmatation and suffosion in a 

porous medium. 

Filtration of suspensions in a porous medium forms the basis for many technical, industrial, and other processes. Among 

them special attention is given to hydrological (filtration of waters through dams, grounds, etc.) [1], chemical and food [2, 3] 

processes, as well as to processes of extraction of petroleum and gas [4]. 

The construction of rather general mathematical models, describing important features typical of the suspension 

filtration process is the field of investigation, which has been studied until now with insufficient completeness. The results of the 

separate theoretical and experimental researches are presented in [5-7]. In work [5] a system of equations is derived for determi- 

nation of the concentration of solid suspensions in liquid n and the saturation density of the porous medium by deposit p. The 

processes of colmatation and suffosion and also the result of their simultaneous action are considered separately in [6]. Together 

with a balance equation use is made of the equation characterizing the intensity of a change in the deposited mass volume ~, 

which is analogous to the equation of the gas adsorption kinetics [8, 9] in the case of a linear dependence of the equilibrium 

concentration on the concentration of a substance under sorption. Consequently, the equilibrium concentration, at which the 

process intensity will be equal to zero, depends only on the deposited mass volume. However, as is shown in [10], the intensity 

of the change of characteristics (in the work we consider the current value of the active porosity but not the volume of the 

deposited mass) depends not only on the values of n and e, but on grad p; this fact is confirmed by experimental investigations. 

In [10] we considered a new model of the filtration, where colmatation and suffosion were taken into account in terms of certain 

probability coefficients, characterizing the intensity of the blockage and freeing process of pores by fluid particles. However, in 

[10] we studied the model with concentrated parameters, and the particle distribution in longitudinal and lateral flow directions 

was disregarded. In this work the model [10] is generalized to the model with distributed parameters. 

Suppose that a suspension with the initial volume concentration of solid particles n o enters the porous medium filled 

with a liquid without particles. Because of deposition of the suspension particles, the pores of the medium are blocked, the 

liquid flow in them is stopped up, i.e. they are disconnected from the filtration process. This fact, naturally, leads to the change 

in the active porosity. Later the colmated pores may become free of particles under the action of the pressure drop. As in [10], 

we assume that each deposited particle blocks up one isolated pore and, consequently, changes the active porosity. Then we may 

write the substance balance equation in the volume unit of the porous medium without reference to convective dispersion in a 
one-dimensional case as follows 

an , v (t) an i Os 

Ot s dx So Ot (1) 
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The change in the porosity with time, similarly to [10], takes on the form 

Os [ Op 
dt --  ( % - s ) ~  P =  ~ - x  ' (2) 

where o l ,  (o 2 are the phenomenologically introduced probability coefficients, which define the intensity of suffosion and colmata- 

tion. 

Equations (1) and (2) should be added by Darcy's law 

v (t) = K (~) p .  (3) 

On the assumption of incompressibility of the suspension and the porous medium we obtain 0v/0x = 0 from the continuity 

equation. 

The form of K(8) in (3) is evaluated in different ways. In the simplest case we may take that K(s) = k0s, k 0 = const, as 

it was considered in [10]. In the general case, we should make use of other dependences of the filtration coefficient on the 

porosity, as it was made in [11]. 

At small values of n, when the change in the porosity is noticeable, in the second term in (1), and in the last term in (2), 

one may assume that e = %. Therefore, instead of (1)-(3) we have 

On K (so) P On 1 & 

Ot 8 0 Ox % Ot 

0e  ̀ (4) 
-- (% - -  e,) (olP - -  (92%n, v (l) = K (5) P. 

Ot 

System (4) is much simpler in the solution than the initial one (1)-(3). 

Let the suspension with the volume concentration of solid particles n o begin to enter into the porous medium, filled by 

liquid without particles, with the initial porosity e 0 of the moment t = 0. Then 

n (0, x ) - - 0 ,  n (t, 0 ) =  no, ~ (0, x ) =  %. (5) 

In the given problem at x = 0 we may assign the mode of the change in the filtration rate. Suppose, that the mode with v = Vo= 

const is developed. Then it is possible to write system (1)-(3) for K(s) = koe as 

On Vo On 1 05 

Ot ~ Ox % Ot 

ds (% - -  s) o 1 v0 (6) 
- - _  t o 2 8 n  , 

Ot ko~ 

vo = ko~P. 

At large t the steady-state fronts of the concentration and porosity are formed, which propagate with the certain 

constant velocity. At this asymptotic stage for determination of the functions s(t, x) and n(t, x) we may use the method of 

propagating waves and consider the steady-state fronts of the concentration and porosity as certain waves. Introducing a new 

variable z -- x - ut, where u is the front propagation velocity of the change in the porosity and concentration, which will be 

evaluated further, we arrive at the system with respect to n(z) and s(z) from (6): 

_ _  v.__oo l d n  u de, u + 
s I d z  % d z '  

ds Vo 
- -  u , = (80 - -  e) ~o~ - -  o)2sn , 

dz ko s 

Vo = koeP. 

(7) 

Since we consider the asymptotic stage of the colmatation and suffosion dynamics, then the determination of the initial 

conditions in (5) no longer arises. For new variable z the boundary conditions take the form 

n ( - -  oo) = no, n (oo) = 0, 

8 ( - -  oo) = 8s~ 8 ( ~ )  = 8 0 ,  
(8) 

708 



where est is the s teady-stable  value  of  the porosi ty,  which is evaluated as the solut ion to the second Eq. (7) at de/dz = 0, n = 

n o :  

( % - - 8 )  co 1 Vo _ o 2 g n o =  O. 
k0e 

(9) 

F r o m  (9) we solve easily 

1 (10) 
act = 7 ( -  0 + ] / 0  (0 -~ 4%) ), 

where 0 = @lVo)/koco2n o. 

By in tegrat ing the first Eq. (7) with account  of  the condi t ions  ~ (~ )  = %, n ( ~ )  = 0, we obta in  

1 ZJ o Vo - -  Ug I 
n - -  (80 - -  8 )  + . I n  - - ,  - ( 1 1 )  

~o Ueo [ Vo - - -  Ugo[ 

Under  the condi t ions  that  n ( - r  = n o and e ( - ~ )  = est , from (11) we derive an equat ion,  f rom which we def ine the front  mot ion 

velocity u: 

u In , Vo - -  UecT (nolo + 80 - - - -  ~ 0 "  
_ t )  Vo v0 - -  "go 

By integrat ing the second equat ion  of  (7) with account  of  (11), we have z = c + z0(e ) or  

(12) 

x ~ u t  -j- c + z0 (e), (13) 

where c is the in tegra t ion  constant ,  and 

(14) 

In much the same manner  we may obta in  a self-similar solut ion for n: z = c + z0(n ) or  

x = ut + c + Zo (n), (15) 

where z0(n ) is expressed in terms of an indefini te  integral  analogous  to (14). 

Fo r  de te rmina t ion  of  the in tegrat ion constant  c, we use the substance conservat ion  law in the same way as it was made 
in [8]: 

nO EO 

j xdn  + .! xd8 -- (no + 8o - -  g~T) u~. 
0 

e S t  

With account  of  (13), (15) from the la t ter  we derive 

1 ~," EO 

no + g o -  ~ t  
s t  

It is possible also to evaluate  this constant  from the balance equat ion (the first equat ion  of  (6)) by in tegrat ing it over  x and t 

within the limits of  [0, Xo], [0, to], respectively, and passing into the l imit  at  x 0 -~ oo, t o --, ~ .  

At  small  n, when the co lmata t ion  effects are  insignificant, the poros i ty  differs slightly from %. Therefore,  in the 

left-hand side of  the first equa t ion  of  (6) one may take that  e = %, as it was made  when deriving Eq. (4). In this case instead of 
(13), (15) we obta in  

x - -  u t  1 

r 2 
( 1 1  n 28s____y_t 4 1 In % + e s t ]  + 

e o - { - ~ t  8 o - - 8  sc  8 o - - e  s t  2e s t  ] 

+ I n  ( ~ - - % t ) ~ ( S s t + S ) v  
(8~ - -  ~)l~ 

(16) 
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Fig. 1. Asympto t ic  profi les  n (solid lines), e (dashed lines) at  091 = 0.1 

m/(MPa .sec) and w 2 = 0.1 (a); 0.5 (b); 1.0 sec -1 (c), t = 0 (1); 4 . 10  3 (2); 

8 . 1 0  3 sec (3) for K(e) = koe. x, m. 

( )v (no - -  n)  ~ So + 8 ~tno __ n 

x - -  u ~  __ 1 ( _ _ 1  In 2 e s !  4- I____L_  In 80 4- e~t t q_ In 8o - - 8  s t  (17) 
r 2 80 4- 8st 8o - -  8 s t  80 - -  8s t  28,s t / nff ' 

where 

1 , I ~ - - - , V %  1 , r =  % u ( ~ : o - - ~ , )  

2 (8o-  ~ 0  4 - 8~ 2 (So + ~ 0  O~:o 

Here  the front  p ropaga t ion  ra te  is de te rmined  by the formula 

u:Vonoltsono4-eo--S~T). 
In the given mode  the re la t ionship  between n and e, unl ike (11), is wri t ten in the s imple  form 

(18) 

/Z E 0 - -  8 
- -  (19) 

no 80 ( % - -  ~t) 

The pressure gradient  is defined from Darcy's  law at the known s:P = vo(koe ). 

Cons ider  the  more  real is t ic  case, when the f i l t rat ion coefficient is taken in the C a r m a n - K o z e n y  form [10]: K(e) = 

koe3/(1 - t )  2. In the mode  v = v 0 = const,  then system (1)-(3) becomes 

On Vo 8n I Oe 

3t 8 Ox % 8t 

(20) 05 __ ( % _  6) ~olvo (1 - -  8)~ co.~an, 
Ot ko8 3 

Vo = koe3p/(1 - -  e) ~. 
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T A B L E  1. Fil trat ion Parameters at co 1 = 0.1 m/(MPa .sec) 

(02, SeC -1  0,1 0,5 1,0 

~CT 

? 

0,2915 
58,8406 
59,6859 

0,8453 

0,2649 
14,2495 

15,1346 
0,8851 

0,2416 
8,5645 
9,4877 
0,9232 

Passing to the variable z = x - ut, from (20) we obtain the system with respect to the functions s(z) and n(z), 

( '--  u * Vo ) dn u de 

. s dz eo dz 

d8 ~%v0 (1 - -  8) ~ 
- -  u = (80 - -  ~) ~o28n, 

dz ko e3 

(21) 

which is solved on conditions of (8). 

The steady-state value of the porosity is determined from the equation, derived from the second equation of system (21) 

under the conditions that de/dz = 0, n = no: 

ea - -  0 (80 - -  e)(1 - -  e) 2 = 0. (22) 

In order to calculate the wave front motion velocity, we obtain an equation, identical to (12), and determine the relationship 

between s and n from Eq. (11). 

Integration of the second equation in system (21) with account of (11) leads to 

where 

z - c + z0 (e) ,  ( 2 3 )  

I YoO)l ~2 (~176 tn O ~  ,--I  
z0 (~) = - . . I  ~3 ~ - - ~ 0  (80 - ~) (1 - ~)2 + _ (t0 - 8) ~ ~ - -  I d ~  

80 u% tv0 - -  u~01 j 

As above, the integration constant in (23) is solved from the balance equation. Using the relationship between e and n, 

we derive the analogous equation with respect to n: z = c + z0(n), where z0(n ) is given by the indefinite integral, similar to (23). 

Using formulae (16) and (17), we carried out calculations at the following values of the initial data: v 0 = 10 -3  m/sec, 

k 0 = 10 . 2  m2/(MPa .sec), n o = 0.01, e 0 = 0.3. Values of O)l(m/MPa .sec) and (o 2 (sec -1) were taken to be different. The results 

are presented in Fig. 1. As can be seen from this figure, when co I does not vary, at small o92 the wave front both for e and for n 

is extremely "blurred," and with increasing w2, it becomes sharp. The change in the value of o) 2 exerts an effect on the wave 

propagation velocity character. With the increase in w 2 the wave velocity diminishes. From the physical viewpoint this phenome- 

non is understandable, because with increasing colmatation, the perturbed zone moves at the lower velocity and the steady-state 

porosity value decreases. The values, characterizing this dynamics, are given in Table 1. 

Profiles of s and n with change in t are not distorted similarly to the case that occurs during adsorption of the substance 

in the porous medium at the linear steady-state sorption isotherm [8]. However, in the general case, when simplifying assump- 

tions (used in deriving (16) and (17)) are taken off, the conservative character of the wave front may not be observed. The 

analysis in this phenomenon can be carried out through numerical calculations by the corresponding equations. 

It should be noted that the profiles of concentrations n are defined simultaneously and by (19) at the known e. The 
obtained results coincide well. 

Although the above-mentioned solutions represent the general pattern of the process, but due to their asymptotic 

character, they do not describe the evolution of the leading wave front into the initial stages of the process. Such description may 

be obtained with the help of the numerical analysis of systems (6) or (20). These systems are solved by a method of finite 

differences under conditions of (5) and e(t, O) = Sst , where %t is determined by (10) (when K(s) = k0s ) or by solution (22) 

(when K(s) = k0s3/(1 - s)2). The second-order difference approximation with respect to grid pitches h, T along x and t is of the 

nonregular nature, respectively [12]. Regularization of the difference scheme is usually realized by methods of smoothing, "artifi- 
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Fig. 2. Profiles n (solid lines), e (dashed lines) at  w 1 = 0.1 m/(MPa .sec) and co 2 = 0.1 (a); 0.5 

(b); 1.0 sec -1  (c), t = 180 (1); 360 (2); 540 sec (3) for K(e) = k0e. 

Fig. 3. Profi les n (solid lines), e (dashed lines) at  w 1 = 0.1 m/(MPa .sec) and co 2 = 0.1 (a); 0.5 

(b); 1.0 sec -1  (c), t = 180 (1); 360 (2); 540 (3) for K(e) = k03/(1 - e) 2. 

cial viscosity," " temporal  viscosity," and by o ther  techniques. In order  to avoid these procedures ,  we composed  an implici t  scheme 

of the first o rder  of accuracy with approximat ion  of derivatives at  points  (i, j), (i - 1, j + 1), (i, j + 1). Here ,  the calculated 

formulae for system (20) on de termining  grid functions eJ +1 = e(t j+ l ,  xi) , n i  +1 = n(tJ +1, xi) take the form 

8i +I  = 8{ + (80 - -  8iJ) 3600T~~176 (1 - -  8i~) 2 3600~c%8ijnih 
/~0 ~ 3 ezf (24) 

n~+' ] n i + ~ . i +  ~ 1 ' ] = . . , _  ~ + - -  (8~ ~- ' - -  ~)  / ( I  + a), 
80 

where 

3600~Oo - ( 8 {  i+t 
a -- - - ,  e i j =  -~- ei-1)/2, 

h~ j  

f t .  -- (hi " n  j+' i-1)/2, i =  1, 2 . . . . .  j = O ,  1, ..., 

�9 " 0 nlo=no, elo 8 ,  n ~  8i =Co, i, ] = 0 ,  1 . . . .  

The difference scheme for system (6) has the analogous form. In (24) conversion coefficients are  employed  so as t ime t 

is measured in hours.  

The calculat ion results  with the above used values of  v0, ko, n o, % are  presented  in Figs. 2 and 3. Deve lopment  of 

profiles of  n and e in t ime, as can be seen from figures, depends  on values of  o) 1 and co2, as well as on the form of the fi l trat ion 

coefficient K(e). With  the increase in the value of  co 2 at  constant  ~ol, one observes the decrease  in the p ropaga t ion  velocity of 

fronts n and e. He re  the width of  the fronts also diminishes,  i.e. the profiles become steeper.  When  the f i l t rat ion coefficient is 
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taken in the form K(e) = k0e3/(1 - e) 2, as compared to K(e) = k0e, then the propagation velocities of the fronts grow (Fig. 3). 

Besides, the wave front is more "smeared" and est is not much less than %. This fact may be regarded in such a way: in the case 

K(e) = k0e at v = v 0 = const the colmatation process occurs more actively in comparison with K(e) = koe3/(1 - e) 2. However, 

for the generalized relationship of K(e) the leading wave front with increasing oJ 2 at constant 091 becomes steeper, and the wave 

propagation velocity diminishes. 

The calculations, carried out on the basis of a discrete system, corresponding to (6) (when the coefficient v0/e is 

substituted by Vo/e0) , have shown that the results differ slightly from those presented in Fig. 2. But this difference becomes 

essential with the growth of  092. Therefore, generally speaking, there is no sense in comparing the results at 092 = 1.0 sec -1, when 

est = 0.2416. Correspondingly, the asymptotic solution, shown in Fig. lc  cannot be compared with the solution given in Fig. 2c, 

although the configurations of the profiles are similar. As is seen from Fig. 2a and b at t = 540 sec the profiles are almost the 

same as in Fig. la  and b. Besides, at the front of the concentration and porosity waves, especially in its leading part, (where 

approximately n < n o /2  and e > (% + est)/2), the steady-state mode is almost established. The front points in the indicated 

region propagate practically at the constant velocity u; therefore, we may consider this time range as the formation stage of the 

asymptotic solution. Duration of the formation stage of the steady-state front in the general case depends on values of w I and 092 

and on the form K(e). 

An estimate of the values of  P is made on the basis of Darcy's law at the known e. It is evident, that at K(e) = k0e the 

decrease from Vo/(k0est ) up to Vo/(k0e0) is a characteristic feature for dynamics of P; the first value is established behind the 

front, and the second one ahead of the front, i.e., in the filtration region of liquid without particles. The front region is transi- 

tional for P. In the case K(e) = k0e3/(1 - e) 2 we observe the decrease of P from v0(1 - est)2/(k0est 3) up t O  V 0 ( 1  - -  eo)2/(koe03), 
respectively. 

For the further development of the work it seems to be very interesting to consider a problem, when pores are not 

completely blocked by the deposition of  suspension particles, i.e. the localization of particles in any volume is not always 

accompanied by the colmatation effect. Within the scope of the presented model it is possible also to investigate the 

multicomponent suspension filtration, where the colmatation and suffosion effects for each component are analyzed in the 

interconnection with the concentration of other components. 

NOTATION 

h, grid pitch of the difference scheme along the coordinate; K(e), filtration coefficient; k0, coefficient in K(e); n, no, 

current and initial concentrations of particles in a suspension; p, pressure; P, pressure drop module; t, time; u, front propagation 

velocity of variation in porosity and concentration; v(t), v0, variable and constant of  the filtration velocity; x, coordinate; z = x - 

ut, variable; a, fl, 7, exponent constants in (16) and (17); e, e0, est , current, initial, and steady-state porosity of the medium; T, 
grid pitch of the difference scheme in time. 
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